EPIC - crop.stress

class mef_agri.models.crop.stress.model_epic.Stress(**kwargs)

Stress model which considers water-, temperature-, aeration and nitrogen-stress according to [R2] .

aeration_stress()

MQ - Random Output

\(c_{\textrm{astr},k}\ [\ ]\) - [R2] (equ. 49, 50)

Returns:

aeration stress factor

Return type:

numpy.ndarray

caf()

RQ - 'critical_aeration_factor' from model with id 'crop'

\(c_{\textrm{caf},0}\ [\ ]\)

Returns:

critical aeration factor of crop

Return type:

Requirement

growth_constraint()

MQ - Random Output

\(c_{\textrm{gc},k}\ [\ ]\) - [R2] (last paragraph in “Growth Constraints” > “Biomass”)

Returns:

(biomass) growth constraint (min. value of several stress factors)

Return type:

numpy.ndarray

initialize(epoch)

Initialization of stress factors with one vectors (i.e. no stress)

Parameters:

epoch (datetime.date) – initialization epoch

m1m()

RQ - moisture_1m from model with id 'zone.soil.supply'

\(s_{\textrm{W-m1m},k}\ [\ ]\)

Returns:

moisture of first meter of soil

Return type:

Requirement

nao()

RQ - 'n_amount_opt' from model with id 'crop.demand'

\(c_{\textrm{N-ao},k}\ [\frac{kg}{ha}]\)

Returns:

optimal N-amount in crop biomass

Return type:

Requirement

nitrogen_stress()

MQ - Random Output

\(c_{\textrm{N-str},k}\ [\ ]\) - [R2] (equ. 47)

Returns:

nitrogen stress factor

Return type:

numpy.ndarray

nsum()

RQ - 'nitrogen_sum' from model with id 'crop.uptake'

\(c_{\textrm{N-ups},k}\ [\frac{kg}{ha}]\)

Returns:

sum of nitrogen uptake of current crop/vegetation period

Return type:

Requirement

por()

RQ - 'porosity' from model with id 'zone.soil'

\(s_{\textrm{por},0}\ [\ ]\)

Returns:

soil porosity (fraction of total volume)

Return type:

Requirement

stemp()

RQ - 'temperature' from model with id 'zone.soil.surface.temperature'

\(s_{\textrm{T-t},s,k}\ [^\circ C]\)

Returns:

soil surface temperature

Return type:

Requirement

tb()

RQ - temperature_base from model with id 'crop.development'

\(c_{\textrm{D-tb},0}\ [^\circ C]\)

Returns:

crop specific base temperature

Return type:

Requirement

temperature_stress()

MQ - Random Output

\(c_{\textrm{tstr},k}\ [\ ]\) - [R2] (equ. 46)

Returns:

temperature stress factor

Return type:

numpy.ndarray

to()

RQ - temperature_opt from model with id 'crop.development'

\(c_{\textrm{D-to},0}\ [^\circ C]\)

Returns:

crop specific optimum temperature

Return type:

Requirement

update(epoch)

The following computations are performed

Parameters:

epoch (datetime.date) – current evaluation epoch

water_stress()

MQ - Random Output

\(c_{\textrm{W-str},k}\ [\ ]\) - [R2] (equ. 45)

Returns:

water stress factor

Return type:

numpy.ndarray

wdem()

RQ - 'water' from model with id 'crop.demand'

\(c_{\textrm{W-dem},k}\ [\frac{mm}{day}]\)

Returns:

water demand of crop

Return type:

Requirement

wupt()

RQ - 'water' from model with id 'crop.uptake'

\(c_{\textrm{W-up},k}\ [\frac{mm}{day}]\)

Returns:

uptake of water at current day

Return type:

Requirement