EPIC - crop.demand

class mef_agri.models.crop.demand.model_epic.Demand(**kwargs)
bmt()

RQ - 'biomass' from model with id 'crop'

\(c_{\textrm{bm},k}\ [\frac{t}{ha}]\)

Returns:

total dry biomass (aboveground + roots)

Return type:

Requirement

hui()

RQ - 'heat_unit_index' from model with id 'crop.development'

\(c_{\textrm{D-hui},k}\ [\ ]\)

Returns:

current heat unit index

Return type:

Requirement

initialize(epoch)

Initialization of random outputs with zero vectors.

Except: \(c_{\textrm{N-co},0} = c_{\textrm{N-c1},0} + c_{\textrm{N-c2},0}\) which is the result when setting \(c_{\textrm{D-hui},0} = 0.0\) in equ. 26 [R2] .

Parameters:

epoch (datetime.date) – initialization epoch

n_amount_opt()

MQ - Random Output

\(c_{\textrm{N-ao},k} = c_{\textrm{N-co},k}\cdot c_{\textrm{bm},k} \ [\frac{kg}{ha}]\)

Returns:

optimal N-amount in crop biomass

Return type:

numpy.ndarray

n_concentration_opt()

MQ - Random Output

\(c_{\textrm{N-co},k}\ [\frac{kg}{t}]\) - [R2] (equ, 25, 26)

Returns:

optimal N-concentration in crop biomass

Return type:

numpy.ndarray

ncoeff1()

MQ - Hyper-Parameter

\(c_{\textrm{N-c1},0}\ [\frac{kg}{t}]\) - [R2] (equ 26, table 2)

Returns:

coefficient to determine optimal N-concentration in crop biomass

Return type:

numpy.ndarray

ncoeff2()

MQ - Hyper-Parameter

\(c_{\textrm{N-c2},0}\ [\frac{kg}{t}]\) - [R2] (equ 26, table 2)

Returns:

coefficient to determine optimal N-concentration in crop biomass

Return type:

numpy.ndarray

ncoeff3()

MQ - Hyper-Parameter

\(c_{\textrm{N-c3},0}\ [\ ]\) - [R2] (equ 26, table 2)

Returns:

coefficient to determine optimal N-concentration in crop biomass

Return type:

numpy.ndarray

nitrogen()

MQ - Random Output

\(c_{\textrm{N-dem},k}\ [\frac{kg}{ha}]\) - [R2] (equ. 25)

Returns:

nitrogen demand of the crop

Return type:

numpy.ndarray

nsum()

RQ - 'nitrogen_sum' from model with id 'crop.uptake'

\(c_{\textrm{N-ups},k}\ [\frac{kg}{ha}]\)

Returns:

sum of nitrogen uptake of current crop/vegetation period

Return type:

Requirement

transpiration_pot()

RQ - 'transpiration_pot' from model with id 'zone.soil.surface.evapotranspiration'

\(s_{\textrm{W-tp},s,k}\ [\frac{mm}{day}]\)

Returns:

potential transpiration

Return type:

Requirement

update(epoch)

The following computations are performed

Parameters:

epoch (datetime.date) – current evaluation epoch

water()

MQ - Random Output

\(c_{\textrm{W-dem},k}\ [\ ]\)

Returns:

water demand of the crop > is set to the potential transpiration from the soil evaporation model

Return type:

numpy.ndarray