EPIC - crop.development

class mef_agri.models.crop.development.model_epic.Development(**kwargs)

Model which computes crop development based on [R2]. Winter dormancy is not considered (i.e. self.winter_dormancy is always set to False). If this is required, see Development_Dormancy.

kwargs \(\rightarrow\) see mef_agri.models.base.Model

dl()

RQ - 'daylength' from model with id 'zone.atmosphere.daylength'

\(a_{\textrm{dl},k}\ [h]\)

Returns:

current daylength at site

Return type:

Requirement

heat_unit_factor_leaves()

MQ - Random Output

\(c_{\textrm{L-huf},k}\ [\ ]\) - [R2] (equ. 9)

Returns:

heat unit factor for leaf growth

Return type:

numpy.ndarray

heat_unit_index()

MQ - State

\(c_{\textrm{D-hui},k} = \frac{\sum_k{c_{\textrm{D-dhu},k}}}{c_{\textrm{D-phu},0}}\ [\ ]\) - [R2] (equ. 2)

Returns:

current heat unit index

Return type:

numpy.ndarray

heat_units_pot()

MQ - Hyper-Parameter

\(c_{\textrm{D-phu},0}\ [^\circ C]\) - [R2] (equ. 2, table 2)

Returns:

potential heat units for maturity

Return type:

numpy.ndarray

heat_units_rate()

MQ - Random Output

\(c_{\textrm{D-dhu},k}\ [^\circ C]\) - [R2] (equ. 1)

Returns:

daily increase of heat units

Return type:

numpy.ndarray

hufl_coeff1()

MQ - Hyper-Parameter

\(c_{\textrm{D-lc1},0}\ [\ ]\) - [R2] (equ. 9, table 2)

Returns:

regression coefficient for leaves heat-unit-factor

Return type:

numpy.ndarray

hufl_coeff2()

MQ - Hyper-Parameter

\(c_{\textrm{C-lc2},0}\ [\ ]\) - [R2] (equ. 9, table 2)

Returns:

regression coefficient for leaves heat-unit-factor

Return type:

numpy.ndarray

initialize(epoch)

Initialization of random outputs with zero vectors.

Parameters:

epoch (datetime.date) – initialization epoch

temperature_base()

MQ - Hyper-Parameter

\(c_{\textrm{D-tb},0}\ [^\circ C]\) - [R2] (equ. 1, table 2)

Returns:

crop-specific base temperature for heat-unit computation

Return type:

numpy.ndarray

temperature_opt()

MQ - Hyper-Parameter

\(c_{\textrm{D-to},0}\ [^\circ C]\) - [R2] (equ. 46, table 2)

Returns:

crop-specific optimum temperature regarding temperature stress

Return type:

numpy.ndarray

tmax()

RQ - 'temperature_max' from model with id 'zone.atmosphere.weather'

\(a_{\textrm{tmax},k}\ [^\circ C]\)

Returns:

daily max. temperature

Return type:

Requirement

tmin()

RQ - 'temperature_min' from model with id 'zone.atmosphere.weather'

\(a_{\textrm{tmin},k}\ [^\circ C]\)

Returns:

daily min. temperature

Return type:

Requirement

update(epoch)

The following computations are performed

Parameters:

epoch (datetime.date) – current evaluation epoch

update_dormancy()

Method which has to be implemented in a child class of Development. It is called in Development.update().

winter_dormancy()

MQ - Deterministic Output

\(c_{\textrm{D-wd},k}\ [\ ]\) (boolean value) - [R2] (section Model Description > Growth Constraints > Winter Dormancy)

Returns:

indicator for winter dormancy period

Return type:

bool

class mef_agri.models.crop.development.model_epic.Development_Dormancy(**kwargs)

This model considers winter dormancy periods. According to [R2], it is present, when the current daylength is within \(\pm\) one hour around the minimum possible daylength at the current site.

Inherits from Development

kwargs \(\rightarrow\) see mef_agri.models.base.Model

update_dormancy()

Determine winter dormancy periods based on current daylength and minimum possible daylength at current site.