EPIC - crop.leaves¶
- class mef_agri.models.crop.leaves.model_epic.Leaves(**kwargs)¶
Model which computes the leaf area index according to [R2] (no biomass, …).
- gc()¶
RQ -
'growth_constraint'
from model with id'crop.stress'
\(c_{\textrm{gc},k}\ [\ ]\)
- Returns:
crop biomass growth constraint
- Return type:
- hufl()¶
RQ -
'heat_unit_factor_leaves'
from model with id'crop.development'
\(c_{\textrm{L-huf},k}\ [\ ]\)
- Returns:
heat unit factor for leaves at current day
- Return type:
- hui()¶
RQ -
'heat_unit_index'
from model with id'crop.development'
\(c_{\textrm{D-hui},k}\ [\ ]\)
- Returns:
current heat unit index
- Return type:
- hui_leaf_decline()¶
MQ - Hyper-Parameter
\(c_{\textrm{L-hld},0}\ [\ ]\) - [R2] (equ. 10, table 2)
- Returns:
heat unit index at which leaf decline starts
- Return type:
numpy.ndarray
- initialize(epoch)¶
Initialize class-intern variables and
lai_rate_pot()
with a zero vector.- Parameters:
epoch (datetime.date) – intialization epoch
- lai()¶
MQ - State
\(c_{\textrm{L-lai},k}\ [\ ]\) - [R2] (equ. 7)
- Returns:
current leaf area index
- Return type:
numpy.ndarray
- lai_max()¶
MQ - Hyper-Parameter
\(c_{\textrm{L-lmx},0}\ [\ ]\) - [R2] (equ. 8, table 2)
- Returns:
max. possible value of lai
- Return type:
numpy.ndarray
- lai_rate_pot()¶
MQ - Random Output
\(c_{\textrm{L-lrp},k}\ [\ ]\) - [R2] (equ. 8)
- Returns:
potential daily increase of lai
- Return type:
numpy.ndarray
- lai_regr_coeff()¶
MQ - Hyper-Parameter
\(c_{\textrm{L-lc},0}\ [\ ]\) - [R2] (equ. 10, table 2)
- Returns:
regression coefficient of lai computation at leaf decline stage
- Return type:
numpy.ndarray
- update(epoch)¶
The following computations are performed
daily change of
hufl()
compute boolean/condition array
cld = self.hui.value > self.hui_leaf_decline
save value of
lai()
at the day when leaf decline starts (i.e. when a realization ofhui()
exceeds a realization ofhui_leaf_decline()
, or wherecld
containsTrue
)two lai values are computed
- Parameters:
epoch (datetime.date) – current evaluation epoch